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ABSTRACT

Two problems in statistical communication theory, the detection and estimation of intel-

ligence-carrying signals are considered for the case of transmission through a multidimen-

sional Gaussian random channel. Such a channel is characterized by the property that a

deterministic. input results in a set of received waveforms which are sample functions of

Gaussian processes.

For the detection problem, a receiver is found which operates on the set of received
waveforms; and gives as outputs, voltages proportional to the logarithm of the likelihood

functions of the possible transmitted signals. For the estimation problem, it is assumed

that the intelligence-carrying signal is itself a sample function of a Gaussian process and

a mathematical description is presented of a receiver which has as its output the maximum

a posteriori estimate of this signal. Examples are presented in which optimum receivers

are, found for both the detection and estimation problem.
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ON THE DETECTION AND ESTIMATION PROBLEM

FOR MULTIDIMENSIONAL GAUSSIAN RANDOM CHANNELS*

INTRODUCTION

In communication systems where information is to be transmitted from a source to a re-

ceiver, the intelligence-carrying signal is always partly distorted and masked in transmission.

A major problem in the field of statistical communication theory is to determine a method to

process the received waveforms in order to recover from them as much of the intelligence as

possible.

In certain communication systems the receiver must determine if a certain signal (or more

generally, which of given set of signals) is present in a received waveform. An example of a

system of this type is a digital transmission system where a predetermined set of signals is

chosen as the signaling alphabet. In other communication systems the receiver is required

to operate on the received waveforms in order to produce an estimate of the waveshape of

the intelligence-carrying signal. An analogue voice communication circuit might serve as an

example of such a system. The processing of the received waveforms in these. two types of

systems will be called, respectively, detection and estimation.

Much of the original work on the detection 14 and estimation s 8 of signals has been con-

cerned with the processing of a single received waveform which consists of the intelligence-

carrying signal perturbed: by additive Gaussian noise. A wide variety of practical problems,
however, cannot be satisfactorily described by such a model. In the first place, for most

practical situations, distortions other than additive Gaussian noise are present in the chan-

nel. Secondly, in many communication systems, the receiver is required to simultaneously

process multiple received waveforms rather than the single received waveform assumed: in

the simplified model. In this report, an attempt will be made to increase the generality of

the mathematical model so as to broaden the class of problems to which the theory applies.

For other treatments of this problem, the reader is referred to the work of Turin, 9 10

Price, 1 1 -1 2 Kailathl 3 and others. 14 -1 5 The portions of this study concerned with the detec-

tion problem will be found to overlap, to some degree, the work of Kailath.

FORMULATION

In this report, the problems of the detection and estimation of signals will be considered

for the situation where the signals have been transmitted through a multidimensional

Gaussian random channel. For the purposes of this report, a multidimensional Gaussian ran-

dom channel will be defined as a transmission channel which, having been excited by any

deterministic signal, results in a set of received waveforms which are sample functions of

Gaussian random processes. Thus, the term multidimensional refers to the multiplicity of the

received waveforms and the term Gaussian describes the joint statistics of these waveforms
*Reieased 21 August 1961.
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Figure 1. Multidimensional Transmission Channel

In general, these waveforms may be correlated with one another. It is to be noted that the

channel is not required to be linear.

Such a channel can be interpreted in terms of the block diagram shown in Figure 1.
Here, the intelligence-carrying signal, S(t), enters the multidimensional transmission

channel and results in the set of M received waveforms r (t),, r (t), ... , rM(t). The multi-

dimensional channel will be said to be Gaussian if the conditional probability of this set

of received waveforms, given a particular S(t), is a jointly Gaussian probability density

function.

It should be emphasized that the ensemble statistics and not the time statistics of

the received waveforms are required to be Gaussian. For instance, in the case of a single

received waveform composed of a deterministic signal in additive Gaussian noise, the en-

semble statistics of the received waveform are Gaussian while in most cases the time

statistics are not. Thus, the classical problem of the detection of a known signal in addi-

tive Gaussian noise is seen to be a special case of this model.

Since there are inherent differences in the formulation of the detection and estimation

problems, it will be convenient to discuss each of these problems separately. For the
detection problem, referring to Figure 2, it is assumed that a set of l received waveforms

r (t), r2(t), ... , rM(t), are available at the receiver over an interval (0, T). These wave

forms are the result of one out of N signals S(i)(t), i = 1, 2, N, chosen by the

r 2Slt (t---0
. .. REC EIVER

OU - CHANNEL rM.t)a-

(N)(t )-o -N

Figure 2.,. Detecti.on Problem
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I
transmitter with a priori probability p(s(i)), entering the transmission channel. The M re-
ceived waveforms are to be processed by the receiverso as to determine which of the N

signals was actually chosen by the transmitter. A complete statistical description of the

set of received waveforms is assumed available to the receiver as well as the a priori

probabilities of the transmitted signals.
A slight variation of this detection problem which arises in radar applications is shown

in Figure 3. Here the transmitter always transmits the same deterministic signal but the

CHANNEL I

CHANNEL 2
S (X) .

CHANNEL N

Figure 3. Detection Problem for Radar

signal travels through one of N transmission channels with some given a priori probability.

These N channels have different transmission characteristics; for example, in the case of

range radar, different delays would be assigned to the different channels. The receiver is
to decide on the basis of a (0, T) sample of the M received waveforms r (t), r (t), ... , rt),

through which of the N channels the signal passed. As in the previous case, it is assumed

that the statistics of the received waveforms and the a priori probabilities of the channels

are known. to the receiver.*
For either configuration of the detection problem, the situation is one of multiple-alter-

native hypothesis testing. That is, given the set of received waveforms, the receiver is
to choose among N mutually exclusive hypotheses. For the radar problem, the ith hypoth-

esis, denoted H i' corresponds to the situation where the signal was transmitted through
the ith channel,, while for the communications problem, H. indicates that s(i)(t) was sent by

the transmitter.
A short discussion of multiple-alternative hypothesis testing follows. The reader is re-

ferred to the references for amplification of these remarks. Woodward I has observed that
a receiver which presents tme a posteriori probabilities of the hypotheses Hi' i = 1,2, ... , N,
tells as much as it is possible to know about these hypotheses from a knowledge of the

received waveforms. A Bayes' decision rule, 16"7 which minimizes the average cost of
*Because of the repetitive nature of the radar transmitted pulse, the a priori probabilities for the hypotheses

during the interval (0, T)can sometimes be taken as the a posteriori probabilitiesi for the hypotheses during
the preceding interval.
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the decisions, has been shown to depend on the relative magnitudes of these a posteriori
probabilities. Another decision rule, the Neyman-Pearson criterion, 18 is useful in testing

between two hypotheses where it is not convenient to assign a priori probabilities to these:

hypotheses. A generalization of this criterion to multiple-alternative hypothesis testing

has shown14 that the decision can be based on the relative magnitudes of the likelihood

functions* for the hypotheses. If the a priori probabilities of these hypotheses are known,

the a posteriori probabilities can be obtained from the likelihood functions by Bayes' rule.

Thus, all of the above criteria for multiple-alternative hypothesis testing depend on the

relative magnitudes of the likelihood functions or the a posteriori probabilities (which can

be obtained from the likelihood functions). Since the logarithm is a monotonic increasing

function of its argument, decisions can be made using any of these criteria on the basis

of quantities which are proportional to the logarithm of the V likelihood functions.

The optimum detector can then be divided into two parts. The first part operates on the

received waveforms and results in outputs which are proportional to the logarithm of the

likelihood functions. The second part weights these outputs in accordance with some cri-

terion in order to make a decision between the hypotheses. In this report, systems will be

considered only for instrumenting the first part of this detector.
The formulation of the estimation problem will next be considered. It is assumed that

the intelligence-carrying signal to be estimated is itself a sample function of a Gaussian

random process. This signal enters the transmission channel, resulting in the M received

waveforms r (t), r 2(t), ... , rM(t). This problem can be interpreted in terms of the block

diagram shown in Figure 1, but now S(t) is one out of an infinite number of signals, these

signals being sample functions ot a Gaussian process. It is desired to operate on the set

of received waveforms, received during the interval (0, T), to obtain an optimum estimate

of the signal S(t). The only restriction placed on the channel is that for any particular

realization of the signal, the set of received waveforms are sample functions of Gaussian
random processes; that is, we have a multidimensional Gaussian random channel. For

simplicity it is assumed that the intelligence-carrying signal is statistically independent

of the statistics of the channel.
It should be noted that many operations normally associated with the transmitter may be

considered as part of this Gaussian random channel. For instance, if the intelligence-

carrying signal is modulated before transmission, this modulating process (linear or non-

linear) can be included in the channel operation. Thus, the estimation of modulated signals

corrupted by additive Gaussian noise,, a problem previously considered by Youla, 6 would be
a special case of this problem.

The optimization criterion used in this report is that of maximum a posteriori probability.5

This method of estimation requires the receiver to choose which realization of the intelli-
gence-carrying signal was most likely sent, given the set of received waveforms

r (t), r (t), ... , rM(t). More explicitly, the receiver is to choose the realization of the intel-
ligence-carrying signal which maximizes the a posteriori probability. This optimization
* The term likelihood function is used to describe the conditional probability of the effect (the received wave-

forms) given the cause (the transmitted signal-),
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11
criterion has also been referred to in the literature as maximum likelihood estimationo and
a posteriori most probable estimation. 8

It should be realized that the output of the receiver in the estimation problem is an

analogue signal while the receiver for the detection problem has outputs which are volt-
ages that represent the conditional probabilities for each of the hypotheses.

A MULTIDIMENSIONAL ORTHOGONAL EXPANSION
Since both the detection and estimation problems have been phrased in terms of multiple

received waveforms, it is convenient to introduce vector and matrix notation. Consider the

M waveforms, nl(t), n 2 (t) ' ... , nM(t), each of which is a sample function of a random pro-

cess. In general these waveforms may be correlated with one another. These M waveforms
can be denoted by the M dimensional vector-n (t), the j th component of this vector, written

n (t), representing the j th waveform. Let the ensemble means of these waveforms be writ-
ten as the vector "r(t). The jth component of this vector mean is then given by the expres-

sion,

m (t) =E n i(t)} (1)//
where E { } denotes the statistical expectation of the term in the brackets.

The second order statistics of these M received waveforms can be described by a co-

variance function matrix, written R(t,x). The element in the j th row and k th- column of this
matrix is defined by the expression

Rk(t,x) = E { [r1 (t) - m.(t) I -rk(x)-mk(x) (2)

Note that if the waveforms are sample functions of Gaussian random processes the mean

vector w(t) and the covariance function matrix R (tx) give a complete statistical descrip-
tion of the waveforms.

In expressions involving vectors and matrices,. the following, notation will be used. The
dot product of two M dimensional vectors A(t) and B(t), written A(t) B(t), is given by the

expression

(1 = 1 Ai(t)Bi(t). 03)
'=1

The trace of the, M x M matrix R (t,x) will be written T r [ R (t,x) T and is defined as.
Mr, (t,x).

i =1 i

Using this notation, a summary will be presented of a multidimensional expansion that. is

useful in the solution of both the estimation and detection problems. This expansion is a

generalization19 of the Karhunen-Loeve 2 0 2 1 expansion to vector stochastic processes. The
proof of the following statements. regarding this expansion can be found in the literature! 4-15

Let the M-component vector stochastic process ii(t) with mean. vector N(t) and covariance

function matrix R(tx)'be represented in the interval (0, T) by the expression

5



n-(t) = -(t) + X N. O (t), 0 < t < T. (5)
]=1

If the vectors f.(t) are chosen as the eigenvectors of the matrix integral equation

-- T
0(t) fR(t,x) 0 (x) dx, 0 < t < T, (6)
1' 

1

and if these vectors: are orthogonal and normalized such that

T
f 0 (t) 0 k (t) dt = / , (7)

then the coefficients N. satisfy the following equations:I

E{N.} = 0, (8)

jk3-Ef iN Nk  =- (9.)

Here 8.k is the familiar Kronecker delta defined as

A j k / /  ,o

8/k 0 j k (IA)

From equations (5) and (7), the coefficients Nj are given by the. expression

T

N = 0 [ t - m t ] "_ U(t ) d t., 0 1 )

Note that subscripts have been used both for indexing eigenvectors of integral equations and

also for denoting components of vectors. Then, the k th component of the vector a.(t) will/I

be written 6,k(t) , the comma between the subscripts differentiating this notation from the

double subscript notation used for elements of matrices.

From a generalization of Mercer's theorem, the i-it h element of the covariance function

matrix can be. written

Rk (t,x) = , a k,j (12)

k=i
k

If an inverse, covariance function matrix, Q (x,z), is defined as

T

R(t,)Q (x,z) dx = Sit-) 1,. (13)
0

6



where 1 is the unit matrix and 8(t - z) is the Dirac delta-function, the i - jth. element of this

matrix can be. expanded in the form
a,

Qi.(x,z) = X k (x) k, k(z) "  (I4):

Let us now assume that the components ofn(t) are sample functions of Gaussian random

processes. Then, the coefficients N. are Gaussian random variables and from equation (9)

are uncorrelated and thus statistically independent. The probability density for the noise

vector n (t), which is the joint probability of the set of coefficients N , can then: be writ-

ten*

k1L [/ 7 Nx kk2Jj (15)

or
1[ 1-2 X k i

~ Ai( xp~ ~ k N 2)(1)

a) 
2

From equation (11), the series =2 Xk Nk can be written

TTM M
SX N 2 ff . [ni(t) - mi (t)1 [n.(x) - m.(x)] I X 0 (t)9 (x)dtdx. (17)

k=i k 0 0 i=i]=i j ' ki k ki ,j

Referring to equation (14); and using vector and matrix notation, this series becomes

TT
00 N 2 = f [(t) W t) Q(t, x) [7(x) - M_(x) I d t dxz. (18)

k=1 0 0 "

Since Q51(t,x) = QO.i(x,t) it can be shown that equation (18) can be rewritten as

T t

2 X NA2  2 f [n(t) -g(t)] [ fQ (tx) [n(x) - m(x) dx] dt. (19)
k= 1 k k 0 0 ""

From equation (16), the natural logarithm of the probability density for the noise vec-

tor -(t) can be expressed as
- 1

logp(n) =K +- 2 log Xk- 2 ,XNk2 , (20)
2k=i k k= 1 k

where K is a constant. Combining equations (19) and (20) we can write
i T t

log p(T) =K + 2 log Xk" f [Ln(t) - (t)] [ f Q(t,x) [Fi(x) - W(x)] dx] dr. (21)+ Tk=l k 0 0 "

*it is realized that some difficulties are encountered in the convergence of equations (15) and (16). Such

difficulties can be avoided by using a finite number of terms in the series or by considering the ratio

P(") where is a reference noise process. These difficulties will be ignored in this report but the
PQI'())
reader should understand that one of these, two procedures can always 'be used to rigorize the work to
follow.,

7



In the work to follow, the set of received waveforms 7(t) will be represented in the interval

(0, T) by a multidimensional orthogonal expansion with uncorrelated coefficients similar
to that given for n-(t) and described in equations (5) through (11). In the most general case

the mean vector and the covariance function matrix may depend upon which particular real-
ization of the intelligence-carrying signal was transmitted (for the estimation problem) or
which hypothesis was true (for the detection problem). Note that if the covariance function
matrix depends upon these conditions so will the eigenvectors and eigenvalues of the ma-
trix integral equation having the covariance function matrix as its kernel. The superscript
i will be used with functions in the detection problem to indicate that hypothesis H. was

assumed true in writing those functions. For the estimation problem, the superscript s

on the functions will indicate that a particular realization of the intelligence-carrying sig-
nal was assumed.

CALCULATION OF THE LIKELIHOOD FUNCTIONS (DETECTION PROBLEM)
In this section systems will be derived which operate on the s!t of received waveforms

and result in outputs which are proportional to the logarithm of the N likelihood functions

corresponding to the N possible hypotheses. The mathematics needed to derive expres-
sions describing these systems have been discussed in the previous section. By analogy
with this work, let us consider that the set of received waveforms, "(t), are expanded
in a multidimensional orthogonal expansion, under the assumption that hypotheses Hi is

correct. Then, following the development given in the last section, an equation is obtained
for the logarithm of the conditional probability density of 7(t), assuming the truth of hypoth-
esis Hi . This conditional probability density is just the likelihood function for hypoth-

esis Hi and, referring to equation (21), is given by the expression

log p(ri'.) - K + 1 c log X k) - f 1-(t)- M-(i (t)] f fQ~i(t'x) [(x) -i ()] dx]dt

2i= k 00

(22)

Here, -m")(t) is the vector mean of r(t), assuming hypotheses Hi; Q(')(t,x) is the inverse

covariance function matrix of r(t), assuming hypothesis Hi; X ?) XT .... are the eigen-
1' 2' 3

values of a matrix integral equation having the covariance function matrix R"i)(t,x) as its

kernel; and K is a constant.
To emphasize the meaning of the notation, the jth component of the vector mean

K(it(); is given by the expression

(t)  = E ri(t) I Hi , (23)

where E { r.(t) IH,} is the conditional expectation of r1(t), assuming hypothesis Hi . Also

the j-kth element of the covariance function matrix R(t )(t,x) is given as

EIH.} (24)

8



The receiver is then to calculate the functions log p(T I H) for i = 1, 2, ... , N. The

assumption has been made that the receiver has a complete statistical description of the set

of received waveforms. Since the received waveforms are Gaussian random processes, the

receiver must have available the components of the vector mean R") (t) and the elements
of covariance function matrix R (i)(t,x) for all values of i.

As an illustrative example, consider the transmission channel shown in Figure 4 where

the additive noise n .(t) and, multiplicative noise n 2(t) are Gaussian, have zero mean and

are uncorrelated with one another. Then the received waveforms are Gaussian processes

r (t)

(2) t
S (t)nlt

S (N) t r2 (t)

n 2t)

Figure 4. Example

with means and variances given by the equations;

m (i)(t) = SM')(t) (25)

m2(t) = 0 (26)

IR1 (t,x) = E {n I(t) n (x)) (27)

R 2 (tX) = E { 2(t) f n ()} S SC(t) S(i),) (28)

R T )(t,') = R 2(1)(x, t) = E ( 1 (t ) 2(X) S(i)(X). (29)

The receiver must then have knowledge of the N signals' S(1)(t), S(2)(t), ... , S:(N(t),and

the covariances E {n 1 (t) n(x)}, E {n 2 (t) n2 (x)), and E {nl(t) n 2 (x)}.

Let us now return to equation (22) and investigate systems which will, calculate these

functions. Defining, the quantities B10 and C)( 7) as

9



B A. 1 log ( (30)

C i (7) = - j [I(t) - M (] [Q(i)(t,x) [(x) - i)("x)]dx3dt, (31)

0 0'

we cai. .rite

log p(FlH) = K + BM + CM)(-F). (32)

The first term, the constant K, is independent of the index i and thus can be ignored. The

second term, B" ), will in general be different for different values of the index i. However,

it does not represent an operation on the received waveforms and can be calculated prior

to communicating. It should be noted that if the covariance function matrix R(i)(t,x) is

independent of the index i, then Bi") would also be independent of the index i and could

also be ignored. The C(i)(r- ) is a function that must be calculated from the M received

waveforms. Rewriting equation (31) in terms of the components and elements of the vectors

and matrices we have

TMM (t,x) [ )- mkf)(x) V dx (') ((33)
ci( - ,f x. X . (0 (t)- .~)(t) ] j dtrkx)

0 jl k=i I' 
0

w~hich explicitly displays the operations necessary to calculate C (i)(T).

A system for calculating the function log p (r IHi ) for the case of two received wave-

forms is shown in Figure 5. In this diagram, the blocks labeled Qi51(,x) are linear filters,,

Qi,(t,x) being the response at time t of the filter to a unit impulse applied at time x. The

complete receiver, of course, must contain M of these systems, one for each possible

hypothesis. A complete receiver is shown in Figure 6 for the single input case.
A receiver which has outputs which are proportional to the a posteriori probabilities

of the hypotheses instead of the likelihood functions can be obtained by a slight modifica-

tion of the previous receiver. From Bayes' rule, the a posteriori probability of H, written

p(H i t-), is given in terms of the likelihood function p (r-1 Hi) and the a priori probability

p (H ) as

p ( H ir) - k p ( IHi) p (HI), (34.)

where k is a constant. Taking, logarithms and referring to equation (32), it is seen that

the logarithm of the a posteriori probability for Hi can be written

log p(Hi F) = (K +k) + (B(i) + log p(Hi)) + Cli)(T). (35)

Thus, the same basic receiver can be used to obtain the functions log p ( H IF) except

for the bias term which is changed by the addition of the term log p (Hi). If all hypotheses

have equal a priori probabilities, no modification of the basic receiver is required.

Configurations for obtaining the likelihood functions (and a posteriori probabilities)

can be devised other than the one described in equations (30) throughl (33) and shown in,

1.0
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T

Q (tt)

2212

Figure 5. Calculation of log p (Fll/) for Two Received Waveforms

Figures (5) and (6). For instance, log p OF IH.) can be written,,

log p (7 1IHls) = K + D'(i) + E ()(F), (36)

Where b~)a bias term which can be calculated before transmission, is defined as

A TT 1

E") (T) f '[i(t) - .(t)] -Q(~)(t,x) -7(x) dx d t. (38)

Note. that iffthe inverse covariance function matrix is independent of the Index i,



+ T

x w h fo )dt

(2 N (t, x), T d

0 0

m (N() B (2 ) "

Figure 6. Complete Receiver Nondiversity Case

T T
the term -1/2 f f' -(t) - Q(t,z) T(x) d x d t will be the same for all hypotheses and thus

0 0 "

can be neglected.

An example illustrating some of these ideas for the case of a single received waveform
is shown in Figure 7 Here, the transmitter chooses one of the signals sin W t, i = 1,

2, ... N, and transmits it during the interval (0, T). The multiplicative noises ml(t) and

m2 (t) are assumed to be uncorrerlated, stationary, Gaussian processes with zero means

and identical covariances R (t- x),

Rm(t-x) = E{m1 (t) m(x) } E {m 2 (t) m2 (x)}. (39)

The additive noise n(t), which is uncorrelated with the multiplicative noises, is assumed

to be a stationary Gaussian process with zero mean and covariance Rn(t-x). The block

denoted 90 degrees is assumed to be a 90 degree phase shifter; that is, a nonphysically

realizable .inear filter whose output i's the, Hilbert transform of its input.

1.2



Fsin 7 I tT td

sin ( ) 2 t M m (

sin N  R[ + 
(4")

Figure 7. FSK Transmission through a Fading Channel

If the keying interval T is large enough (T > > for all a the c o t,d

gree phase shifter will be cos wot and the received waveform can be written

r(t) =(t ) + m(t) sin wt + m2 (t ) cos wit ,  (40)
o r

r(t) = n(t) + R(t) sin [ wt + (k (t) ],(41)

where Rt) is Rayleigh and 0(t) is uniformly distributed (- 7t 7r). This model, which has
been previously considered by Price, 11then represents a narrow-band Rayleigh fading

signal with additive Gaussian noise r
The mean of r () is identically equal to zero for all H i, and the covariance R(i)(t,x)

.can, be written, as the difference of the two variables t and. x and is ,given by the expres-

sion
R M)(t-x) = R, (t-x ) + Rm (t-x ) Cos woi(t-x ) .  (42)

Referring to equations (30) through (32) it can be shown that the bias term B(i ) is the same
for all hypotheses. The optimum receiver is then given by the block diagram shown in Fig-

ure 8, where the impulse responses h()'(x,z) of the time varying linear filters are the solu-
tion to the integral equation,

T
f [ Rn(t-x) + Rm(t-x.) cos coiit-x)] h()(x,z) dx = 8 (t-z), (43)
0

0< t, z < T.

Ignoring the physical realizability of these filters and assuming that T is large enough so
that Fourier transform techniques can be used, the transfer function of the i th filter is
given approximately by the expression

1

H:'(i o I .(44)i
-_ + 1/2 [ ,6 .(W+ + (W-W

13



ee at

(N)T
h (t,z) Xd t

Frigure 8'. optimum Receiver for Example Shown in Figure 7.

Here Sa°) and 6m (ow ) are respectively the power spectra of the additive and multiplica-

tive noises. Thus the filters: are essentially band reject filters with the stop band cen-

tered at ow..

The outputs of the receiver shown in Figure 8 are, except for the omission of additive

constants, the logarithm of the likelihood functions (or the logarithm of the a posteriori

probabilities since the a priori probabilities were assumed equal). These functions are

then used in making the decision.

As a second example consider the transmission system shown in Figure 9, where the

intelligence-carrying signal S(t) is one of the N signals S()(t), i = 1, 2, ... , N. The two

nl (t)

S~~t)n t ,= = t

(2)
r (t)

m( t ) 
,)Y

2

Figure 9. Transmitted Reference Communications System
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ieceived waveforms are given as

r(l)(t)= S)(t)m(t) + n 1 (t) 0 < 'I' < T

r(2)( t) = m(t)+ n 2 (t) (45)

It is assumed that the noises n (t), n 2 (t) and m (t) all are sample functions of independent

Gaussian processes. with zero means and covariance functions

E {n 1 (t)n(-r)} = 01 a(t-r), (46)

2

E {n 2 (t)n 2 Q(r)} N O- 2  
8 (t r), (47)2

M
E { m(t)m('r)} = _ 80 S(t- T). (48)2

Such a situation would occur when a wide-band Gaussian noise m (t) is used as the carrier

for transmitting digital signals and this noisy carrier is also transmitted over another chan-

nel for use by the receiver in, the detection process.

The mean vector of 7(t) is identically equal to zero and the covariance matrix

R ')(t,x) is givent as

) 0 S(i)()sli)(x) + N0 1 M0SW(i(t) 1
R( i)(t,x) = 2(-x L19

2 i s0 ) (x) iM0 + NO2_J

The inverse, covariance function matrix Q (")(t,x) is then

Q10)(t ) = 2 8(t-x) x

N N 1 N02 + Mo (No2S()(t)S(+)(z) +No,)

F4 + N0 2  -M 0 50i)(x,)
(50)

SM G S)(t) M 0S(i)(t)S(i)(x) + N01

To further restrict the problem it is assumed that the transmitter is sending equi-

probable binary digits,. the two possible signals being a signal S(t) and its negative,

that is,

15



i S(t --I
S(O)t =. 

(1-S(t) i

In this case it can be shown that the bias term B(') is the same for both hypotheses. The

logarithm of the likelihood function is then given as

TM S(t) r(1) (t) r(2) (t) d t i

0 N0 1 N0 2 + M0 (N0 2 S
2(t) + No,)

log p(-[Hi) = (52)

K- 4M T S(t)r(1) (t)r(2) (t) it =21 1 02S 0 2 S 2(t) +N

where K1 is a constant. Thus the optimum receiver calculates the quantity

T S(t) r" ) (t) r(2) (t) d tf
0 N 1 N 02 +Mo(No 2 S2 (t) + N)

Note that if S(t) is a constant the optimum receiver just computes the short-time cross-

correlation of the two received waveforms.

MAXIMUM A POSTERIORI PROBABILITY RECEIVER (ESTIMATION PROBLEM)
Let us now assume that the intelligence-carrying signal S(t) is a sample function of

a Gaussian random process with zero mean and covariance Rs(t,x). The signal is trans-

mitted through a multidimensional Gaussian random channel and the statistics of the

signal and the channel are independent. It is desired to operate on the set of received
waveforms, 7(t), received during the interval (0, T), in order to obtain the maximum

posterior estimate of the signal S(t). That is, the output of the receiver is to be that

particular realization of S(t) that maximizes the a posteriori probability p (S r7). Since

the logarithm is a monotonic increasing function of its argument, the realization of
S(t) which maximizes the a posteriori probability will also maximize the logarithm of

the a posteriori probability.
By analogy with the work. on detection, let us assume a particular realization: for S(t)

and expand the set of received Waveforms in the orthogonal expansion
00 

W

r(t) =m (S.)(t) + D(s ) s(t), 0 < t < T, (53)

where the 0 .(s) (t) are eigenvectors of the matrix integral equation

16



T
X(s) fR (s) (t,x) _ts) (x) dx = -{s )(t) 0, < t < T, (54)I o I

and are orthonormal; that is,

T

0 ! k

In these equations -;W (s) (t) is the vector mean and R (S)(t,x) is the covariance function

matrix of the received waveforms, both assuming a particular realization of S(t). Then,
the logarithm of the conditional probability ot 7(t) given a particular S(t) can be written

log p(FIS) = K + Z log ("s . l 0 0 s) ( a())2

3 lo X S) 2 (S )(CL(S ) 2(56)a 2 = 2 i

Let us now- expand the signal S(t) in an ordinary Karhunen-Lolve expansion. That is,

let
CO

S (t) (57)

where the 0 i(t) are the eigenfunctions of the integral equation
I

T
y.f R ,(tx) r(xr) d'x = () 0 < t < T, (58)
10

and are orthonormal,

T

fI.(t) W k(t) dt = 8
.  (9)

Then the logarithm of the a priori probability of S(t) can be written. as

log p(S) =K + 1 logy.- y (60)
4  2i= 1 2 = "

Using Bayes' rule and referring to equations (57) and (60), the logarithm of the a

posteriori probability for S(t) can be written
0- 1 OD .,

2(S g (SY M\y/- 8.2.
log p(S I)=K +! =1log A. 2 log Y-= X(s)( ) 2 (61)5l2g 2( IF' =  Is  2]=1' J 2i =1

The signal S(t) which maximizes the logarithm of the a posteriori probability will be found
by solving for the set of coefficients 13 k that makes equation (61) a maximum. Thus, taking

the partial derivative of the terms in equation (61), with respect to 13 k and setting the re-

sult equal to zero results in- the equation

17



1D 1S OD (s. (S )a)2 ] yk (6-2)
2 (S) - 2 , kkI

V#k(s)

Multiplying equation (64) by the expression -- and summing:over the index k results
'/k

in the following expression for the estimate of S(t),

1s~ t) 1, 'kk&) ** (Wk) )(63),
(t) -- _-_ -4 X . "r [K* * 2 ],1 k t

) .3l yk 2 j~ik=1 3l / / k
2 i~ k=1 x k 2i"i ~ Y

The notation S (t) is used to indicate an estimate of S(t). The functions with the super-

script* also depend upon this estimate.

It is desired to find more convenient forms for the terms on the right hand side of equa-

tion (63). It is shown in the Appendix that the first term can be written as

2 ) Go k0 W I T r ( 'X) kk W1~~7I K/k~t TK (~)~*y dx dy (64)

/

and the second term becomes

k TT *

kt I CO T)2~ ki ' 3 k , 2 k=1 00 3

k kkQY(x,y) [y)-*(y,)]] -dx dy.

Then the optimum estimate S (t) is given by the sum of these terms.

The inverse covariance function matrix Q(y,x) will, in general, be a function of the

intelligence-carrying signal. This functional dependence may occur through the appearance

of terms which are explicit functions of S(x) and S(y). However, the matrix Q(y,x) can depend

implicitly on the intelligence-carrying signal; for example, Q(y,x) could be a function of
T -

f S2 (z)dz. A similar situation may occur for the vector mean W(x). If the intelligence-
0

carrying signal appears in Q(y,x) and (x) only in terms which are explicit functions of

S(x) and S(y), then it is shown in the Appendix that equation (64) becomes

1 K1  (t) f f Rs(tx) Tr R*(x,) d:x dy, (66)

j=ik= 8. k0kI

and, equation (65) can be written as

18



O OD * 210k(t) T T [* n X
-[-j 0I (xy)-

2jki ~k I Yk 0 0 LS
(67)

3Q * (x,Y)1
- [(x)-- (x)1 - | [7(y).()_]Rs(t,s,)dxdy.

_6S(X)J

For this case, the optimum estimate of S(t) is given by the expression

* T T Fr ~ ('1 Fx
S (t) = J Rs r(t, f Tr (X " "),S(x) X0 tx 'LLxY ' S(x) +" Q (~)

0 0 k SX' --s(

* (68)

[ (X) M W I Q (x,y) 1 •-[ (,0 a-* )] s(X) I . ') yd

In addition, if the covariance function matrix R(x,y) is independent of, the signal transmitted,

the estimate S (t) is given as

T T - m*() ,
S*(t) = r R(t,x) f Q(x,.y) [r(.y)-m (y)Idy dx, (69)

0 0 3 S(x)

while if the vector mean X(x) is identically equal to zero the estimate S (t), can be written

* T T [T3Q* (y'x) 'Q(XY
S (t) = f Rs(t,x) f R (x,y), -(x) 7(y) dy dx. (70)

0 0 -s (a) j 3 s (,I

If the inverse covariance -function matrix or the vector mean have an implicit dependence

on the intelligence-carrying signal, equations (66) through (70) do not apply but equations

(63) through (65) are still valid. Expressions similar to equations (66) through (70) can

still be obtained for particular problems but the form for these expressions would change

from problem to problem.
As an example of an estimation problem, again consider the transmitted reference com-

munications system shown in Figure 9. It is assumed that the intelligence-carrying signal
S(t) is a sample function of a Gaussian process with zero mean and covariance Rs(t,x). The

additive and multiplicative noises, m(t), n 1(t) and n (t), are again assumed to be sample
functions of independent Gaussian processes with zero means and covariance functions as
in equations (46) through (48).

The inverse covariance function matrix of the received waveforms assuming a particu-

lar realization of S(t) is then, from equation (50), given as
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M0  N 02 M0 S(Z2) ,

Q(yix) (y x) (71)N0 1 N0 2 +M 0(No 2S(y)S(,)+N%1 )

Q )2 -LM 0 S(y) MoS(y)S(X) +No-

Note that this matrix only has an explicit dependence on the intelligence-carrying signal so that

aQ(y,X)
equations (66) through (70) can be used. The quantity " is then given as

S(x)

Q*(YX) 2 S (y-X) M0  FN
0 2S(yXM 0 + N0 2) N° 1 (M0 + N0 2)- 2 (72)

-S(x) [NON 02"+M6(No2S(Y)S(x) +Nop] 0  2 2 ) MNNoOS ) ] (
so that

[ 0 (yx) -M 0 N0 2 S(X)
Tr .R(x,S) dy = N (73)0 'asW OSo2 +M 0 [ 2 ( +N

and

T *(x,y) -2M o [NOlN 02 +M0 [No 1 -N0 2 [S*(z) ]2]r(0)(x)r(2)(x)rT () - r(Y) dr Y .. +
0 aS(x) [NolN + Mo [N [S*(x)] 2 + V0] ] 2

002 002 01

(74)

2M2No:S*(x) [r(2)(x)] 22MoNo 2S*(x).(M ° + No2) [r(1)(x) ] 2

[NO1 No 2 + MO ( o2S )] 2 + No1 ]] 2

Equations (73) and (74) are then substituted into equation (70) to obtain an expression for

S (t). It is to be remembered that all terms affixed with an asterisk depend upon the

estimate S* (t).

SUMMARY

Two classical problems in statistical communication theory, the detection and estima-

tion of intelligence-carrying signals, have been considered for the case of transmission

through a multidimensional Gaussian random channel. This channel is characterized by

the property that a deterministic signal results in a set of Gaussian (in general, correlated),

received waveforms.
For the detection problem, a receiver was; found. which operates on .the setof received
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waveforms and gives as outputs,voltages proportional to the likelihood functions of the
possible transmitted signals. Two configurations fe' this receiver are mathematically de-
scribed in equations (30), (31) and (32) and equations (36), (37) and (38). A modification
to this receiver which results in outputs which are proportional to the a posteriori proba-
bilities of the signals is described by equation (35). This theory was then used to find

the, optimum detector for FSK transmission through a particular type of fading channel.
The optimum detector was also found for a transmitted reference communications system.

For the estimation problem, a receiver was found which has as its output a signal
which is the maximum a posteriori estimate of the intelligence-carrying signal. Various

forms of this receiver are described mathematically in equations (63) through (70). As an
example, a mathematical expression was found for the optimum estimate of a Gaussian
intelligence-carrying signal for the case of a transmitted reference communications system,

.21
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APPENDIX

In this Appendix, equations (64) through (67) of the text will be derived. The notation

of this Appendix, except for the omission of the superscripts*, will be identical to that of

the text and use will be made of previously defined functions.

Referring to the definition of the trace of a matrix given in equation (4), and using the

expansions for (x,.y) and Q(x,y) given in equations (12). and (14), we can write,

ff Tr R (x, y) dy~ dx -

o o -0If/3iik  j ~ (jdd= ~ 7 a , (X (Y .e y x

T T M 10 ~mx0n jg ( ( xd
+f f x ( M Im +

o 0 m=i n=1 =1 -a . (Y k

+ (x) 1 ' dx dy.
Ij.'m 8 k

Noting the orthonormality of the vectors 0-(x ) this equation becomes

T__T__ 1 '3X

f f Tr V(X1Y) dxd.%Y -1
00 )k I J . "3'k

T 66 (x ) T M 02'91- n( (76)

+f . Cx) dx+ f ]
0 M1j1 jm 6 0 n=1 =1 I ,i-6'k

The last two expressions on the right hand side of equation (76) are zero as can be seen by

writing

T M-

f X 0 (x) 0. (x) dx= I (77)2/38, o n =1 i , n ,n

or '30.

X' (x) i"" dx = 0. (78)
0' nz=i i , fk
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Multiplying the remaining terms in equation (76) by -1 adu i oe

-- ~ and summing over the2 k
index k results in the expression

L ~ OO TrfR,(x,y ) J- - r' dy dx (79)

which is equation (64) of the text.
If QM. (.,y ) depends on the intelligence-carrying signal (and thus on 3,)only through

the appearance of terms which are implicit functions of S(x) and S(y), then

N.q = n Q. ( y,x) m. (r, (80
Ok (Y) + - k (X C80)

3/3 3S(y )'a (X

sor that 3X b(e) T il 3 Q(y,x)
S1 I f R (z, y)'

1=1 k-i dkx 0 0 Mai a -i mn

I k k
T TM M Q y(xx) F kx 8(t

- +I - 2 R, (,y) m dy dx.

2 2 0 0 Mai '/ 1 k!° °)
Since Q eqation () t and

R (ox) 1 Ikt~kz (8,2)
S kiw x

we can finally write

M ~ OD( T T XQ~~
:1 ~ ~ I ± f fR (tX d dy (3

aji k-i 38k Y 0 0 z) TrL zY) -Ys -- X)

which is equation (66) of the tex t.

From equations (53) and. (55), we can write

= f x) Qx,y[(X(y) =n(y)]dyd. (8)
j=1 / .0 0

Taking the partial derivative of both sides of equation (84) with respect to 3k multiplying by

Ok (t)
k and summing over the index k results in the equation.

^2k
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i =, = kh(85)
1 TT - - .

[r f [(z) - m Wx Q(X,) hr () -n (Y) dx dy

which is equation (65) of the text.
Let us restrict ourselves to the case where Q(y,x) and r(x) depend on the intelligence-

carrying signal only through implicit functions of S(x) and S(y).

Then equation (85) can be rewritten as

I I Y- '3(,. .,2 Q (,y)[r C,') -rn (Y) I
2 0k-1j-1, Yk3  0 0 (

k. k dX dy (86)
k=1 "Yk

TT - k( O X)
fJIr.(x)- ) r (y)- ()] n k dxdy.

V.o 0 -S( X) k,--i 9

Referring to equation. (82), equation (86) becomes

FT1 ~ ~ ~ 5 Ax) -(X.,,' a 2 ~~1 (
T k=:l/=l -6, k  (Y"' k

S ?3S(x) Q(ry) [r (y)-m[(()-(x]x~d()y0X, (z ( ((.)( x) di dS{y

which is just equation (67) of the text.
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